Extensions 1→N→G→Q→1 with N=C15 and Q=C22⋊C4

Direct product G=N×Q with N=C15 and Q=C22⋊C4
dρLabelID
C15×C22⋊C4120C15xC2^2:C4240,82

Semidirect products G=N:Q with N=C15 and Q=C22⋊C4
extensionφ:Q→Aut NdρLabelID
C15⋊(C22⋊C4) = D6⋊F5φ: C22⋊C4/C2C2×C4 ⊆ Aut C15608+C15:(C2^2:C4)240,96
C152(C22⋊C4) = D10.D6φ: C22⋊C4/C22C4 ⊆ Aut C15604C15:2(C2^2:C4)240,124
C153(C22⋊C4) = C3×C22⋊F5φ: C22⋊C4/C22C4 ⊆ Aut C15604C15:3(C2^2:C4)240,117
C154(C22⋊C4) = D10⋊Dic3φ: C22⋊C4/C22C22 ⊆ Aut C15120C15:4(C2^2:C4)240,26
C155(C22⋊C4) = D6⋊Dic5φ: C22⋊C4/C22C22 ⊆ Aut C15120C15:5(C2^2:C4)240,27
C156(C22⋊C4) = D304C4φ: C22⋊C4/C22C22 ⊆ Aut C15120C15:6(C2^2:C4)240,28
C157(C22⋊C4) = D303C4φ: C22⋊C4/C2×C4C2 ⊆ Aut C15120C15:7(C2^2:C4)240,75
C158(C22⋊C4) = C3×D10⋊C4φ: C22⋊C4/C2×C4C2 ⊆ Aut C15120C15:8(C2^2:C4)240,43
C159(C22⋊C4) = C5×D6⋊C4φ: C22⋊C4/C2×C4C2 ⊆ Aut C15120C15:9(C2^2:C4)240,59
C1510(C22⋊C4) = C30.38D4φ: C22⋊C4/C23C2 ⊆ Aut C15120C15:10(C2^2:C4)240,80
C1511(C22⋊C4) = C3×C23.D5φ: C22⋊C4/C23C2 ⊆ Aut C15120C15:11(C2^2:C4)240,48
C1512(C22⋊C4) = C5×C6.D4φ: C22⋊C4/C23C2 ⊆ Aut C15120C15:12(C2^2:C4)240,64


׿
×
𝔽